首页> 中文期刊> 《中国民康医学》 >Transport and regulation mechanism of the colloidal gold liposomes in the brain microvascular endothelial cells

Transport and regulation mechanism of the colloidal gold liposomes in the brain microvascular endothelial cells

         

摘要

Objective:Blood-brain barrier is the key barrier of brain in the innate immune. It can prevent the harmful substances from the blood into the brain. In order to keep the brain in a relatively stable environment and maintain the normal function of the nervous system, it can also pump harmful substances or excess substances outside the brain selectively. Among them, brain microvascular endothelial cell tissue is a key part in the blood-brain barrier's function. The number of the patients with central nervous system ( CNS) diseases increased year by year. The therapeutic drug is usually inhibited by the blood-brain barrier and is difficult to work. Therefore, how to modify the drug and to make it easier to cross the blood brain barrier is the key point to cure CNS. At present, more than 95% research focus only on how nano drugs can enter the cell, the way and efficiency to enter the cell and the research of effect of nano drug etc. For the process of drug carrier in endocytosis, intracellular transport and release and regulation of research are rarely reported. Clathrin and P-glycoprotein are related protein in endo-cytosis and exocytosis with nano drug. Clathrin is located on the plasma membrane. It participates in endocytosis of some nutrients, and maybe the entry into the cell of some drugs. P-glycoprotein is located in the membrane of cer-ebral capillary endothelial cells. It can efflux drugs relying on ATP. Although there is a certain understanding of the cell in the inner swallow and efflux. But the process of the liposome drug is not clear. To solve the above prob-lems, using colloidal gold liposome nano materials to trace liposome's transport and regulation mechanism in brain microvascular endothelial cells, and study endocytosis, release, distribution and regulation mechanism of nano lipo-somes in brain microvascular. The solution of this problem can guide to construct reasonable drug carrier, and look forward to clarifing the molecular basis and mechanism of nano drug carriers across the BBB. This work has impor-tant theoretical and practical significance for the development and application of liposomes in the future. Results:For untreated cerebral microvascular endothelial cells, the cells incubated with colloidal gold liposomes can uptake of liposome colloidal gold, and with the extension of time, there are gold colloids in the plasma membrane, endo-plasmic reticulum, Golgi apparatus and lysosomes in order, and finally colloidal gold liposome exports out of the cell. For cerebral microvascular endothelial cells treated by sodium azide, compared with untreated cells, the cells incubated with colloidal gold liposomes, cannot be observed liposome colloidal gold in them. For cerebral microvas-cular endothelial cells treated by reserpine, the cells incubated with colloidal gold liposomes, compared with un-treated cells, colloidal gold liposome cannot export out of the cell. Conclusions:The uptake of liposomes in brain microvascular endothelial cells require clathrin's participation. The excretion of liposomes from brain microvascular endothelial cells require P-glycoprotein's participation. After colloidal gold liposome entering brain microvascular endothelial cells, it moves into the endoplasmic reticulum, Golgi apparatus and lysosomes in order. Finally colloi-dal gold liposome exports out of the cell.

著录项

  • 来源
    《中国民康医学》 |2015年第14期|124-125|共2页
  • 作者

    WANG Lipeng; CHANG Yanzhong;

  • 作者单位

    Laboratory of Molecular Iron Metabolism, College of Life Science, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei 050024 China;

    Laboratory of Molecular Iron Metabolism, College of Life Science, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Hebei Normal University, Shijiazhuang, Hebei 050024 China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号