首页> 中文期刊> 《机械制造与自动化》 >基于WPD-tSNE-SVM方法的电站机组主轴故障诊断分析

基于WPD-tSNE-SVM方法的电站机组主轴故障诊断分析

     

摘要

为提高电站机组主轴故障诊断效率,设计一种WPD-tSNE-SVM组合模型,采用小波包混合特征与支持向量机(SVM)对电站机组轴承开展故障诊断。研究结果表明:采用t分布式邻域嵌入方法降维数据呈现规律分布特征,说明小波包混合特征提取方法能够满足有效性。非线性SVM多故障分类器能够满足小波包混合特征的精确故障分析,各分类器都可以实现小波包混合特征集的高效分类,以径向基核函数设置的非线性SVM诊断方式达到了更高的准确率,从而为之后的维护保养过程提供参考价值,促进维护效率的进一步提升,有效保障电站机组主轴处于稳定运行状态。根据该方法诊断主轴轴承运行故障,为后续维护保养提供指导意义,获得更高的维护效率,确保电站机组主轴运行稳定性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号