首页> 中文期刊> 《四川大学学报:自然科学版》 >一种考虑用户兴趣转移特征的协同预测模型

一种考虑用户兴趣转移特征的协同预测模型

     

摘要

大多数预测模型使用用户属性或社交关系信息来优化预测结果,然而真实系统中用户的属性或社交关系信息往往很难获得,或者取得的是虚假信息,从而导致用户行为表达不准确或模型不具有普适性.另外,几乎所有使用用户特征的模型仅考虑用户兴趣本身的度量,而忽视兴趣的变化这一重要特征.因此,本文提出一种考虑用户兴趣转移特征的协同预测模型.该模型根据用户连续行为序列构建用户兴趣转移特征和用户行为演变网络,利用用户兴趣转移特征计算用户相似性,进而搜索最近邻集合,利用用户行为演变网络筛选候选集,最后设计最频繁项提取算法来产生预测结果,从而构建用户行为的预测模型.在真实的新闻浏览日志、交互式网络电视视频访问日志和微软服务器日志上的实验表明该预测模型是有效的.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号