首页> 中文期刊> 《沈阳工业大学学报》 >炮钢表面电弧离子镀TiAlN薄膜的摩擦磨损性能

炮钢表面电弧离子镀TiAlN薄膜的摩擦磨损性能

         

摘要

In order to enhance the wear resistance of PCrNi3Mo steel, the Ti0.7Al0.3N and Ti0.5Al0.5N films were deposited on its surface with the arc ion plating technology, and the microstructures and morphologies of as-deposited and worn films were analyzed. The results show that the two films belong to the columnar structure with fine grain size. The hardness of Ti0.7Al0.3N and Ti0.5Al0.5N films increases by 4.75 and 4.22 times than that of PCrNi3Mo steel, while the elasticity modulus increases by 88% and 84% than that of PCrNi3Mo steel, respectively. In addition, the stable friction coefficient of Ti0.7Al0.3N film is lower, and the two films have the significant antifriction and antiwear effect. The wear mechanism of PCrNi3Mo steel is severe adhesive wear, while that of two films belongs to slight adhesive wear. Due to the brittle fracture, the spalling zones with bigger area locally form on the Ti0.5Al0.5N film, and the main reason for the local cracking and failure is that the supporting force supplied by the PCrNi3Mo steel with low hardness to the films is small.%为了提高PCrNi3Mo钢的耐磨性,利用电弧离子镀技术在其表面沉积了Ti0.7Al0.3N和Ti0.5Al0.5N薄膜,分析了沉积态和磨损态薄膜膜层的微观结构和形貌.结果表明,两种薄膜膜层均属于晶粒细小的柱状晶结构.Ti0.7Al0.3N和Ti0.5Al0.5N薄膜的硬度分别比PCrNi3Mo钢提高了4.75和4.22倍,而弹性模量分别比PCrNi3Mo钢提高了88%和84%.Ti0.7Al0.3N薄膜的稳定摩擦系数较小,两种薄膜具有显著的减摩耐磨作用.PCrNi3Mo钢的磨损机理主要为严重粘着磨损,而两种薄膜的磨损机理属于轻微粘着磨损.Ti0.5Al0.5N薄膜因脆性断裂局部产生了更大面积的剥落区,低硬度的PCrNi3Mo钢基体对膜层的支撑力变小是导致薄膜局部发生开裂破坏的主要原因.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号