首页> 中文期刊>半导体学报:英文版 >A 1.2 V,3.13σ-accuracy thermal sensor analog front-end circuit in 12 nm CMOS process

A 1.2 V,3.13σ-accuracy thermal sensor analog front-end circuit in 12 nm CMOS process

     

摘要

This paper presents a 1.2 V high accuracy thermal sensor analog front-end circuit with 7 probes placed around the microprocessor chip.This analog front-end consists of a BGR(bandgap reference),a DEM(dynamic element matching)control,and probes.The BGR generates the voltages linear changed with temperature,which are followed by the data read out circuits.The superior accuracy of the BGR’s output voltage is a key factor for sensors fabricated via the FinFET digital process.Here,a 4-stage folded current bias structure is proposed,to increase DC accuracy and confer immunity against FinFET process variation due to limited device length and low current bias.At the same time,DEM is also adopted,so as to filter out current branch mismatches.Having been fabricated via a 12 nm FinFET CMOS process,200 chips were tested.The measurement results demonstrate that these analog front-end circuits can work steadily below 1.2 V,and a less than 3.1%3σ-accuracy level is achieved.Temperature stability is 0.088 mV/℃across a range from-40 to 130℃.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号