首页> 中文期刊>西北工业大学学报 >运输类飞机气动力分析软件ATTF的开发与验证

运输类飞机气动力分析软件ATTF的开发与验证

     

摘要

针对我国运输类飞机设计与发展的实际需要,开发设计了一种高效的复杂外形气动力计算与分析软件ATTF(Analysis Toolkit for Transonic Flows).软件采用结构化多块计算网格,通过求解Navier-Stokes方程,实现三维复杂外形粘性绕流流场的数值模拟.控制方程的求解采用Jameson中心有限体积+人工粘性格式,并采用显式五步Runge-Kutta格式进行时间推进求解.方程求解采用了当地时间步长、变系数隐式残值光顺以及多重网格等多种加速收敛措施.程序采用动态内存管理技术以提高计算机有限内存的利用率.在确保控制信息和边界信息准确无误、内存容量允许的条件下,同一个可执行文件可以用于不同几何外形、不同网格规模和拓扑结构的流场数值求解.为检验ATTF程序的计算效率和稳定性,验证其对于复杂外形气动力特性的预测和评估能力,文章针对DLR-F6带短舱挂架的跨声速宽体运输类飞机外形进行了数值模拟与计算,并与风洞试验结果、CFL3D和TRIP2.0的计算结果进行了分析对比,结果显示AM软件的计算结果是可靠的,其计算精度与国内外同类软件相当.%An efficient computational fluid dynamics (CFD) software named ATTF ( Analysis Toolkit for Transonic Flows) for the aerodynamics prediction of complex configurations is developed to meet the engineering requirement for the large aircraft project in China. The compressible thin-layer Reynolds-averaged Navier-Stokes equations are solved to simulate the three-dimensional complex viscous flows, and the computational grids are structured multi-block grids with one-to-one mapping style to exchange the flow field information. The control equations are solved using Jameson's central differenced finite volume method and an explicit five-stage Runge-Kutta scheme is used to advance the solutions to steady state. To improve the efficiency of the solver, several techniques such as local time-stepping, implicit variable-coefficient residual smoothing and multigrid are applied to accelerate the convergence.The solver utilizes the technique of dynamic memory space management to optimize the limited memory space for a small computer, and only one executable file is needed to run different flow simulations with different size of data and various grid topologies, and the executable file only need an input file including correct boundary conditions and necessary control information for a given case. To evaluate the capacity and efficiency of ATTF for complex configurations of civil transport aircraft, the transonic flow simulations around DLR-F6 wing-body-nacelle-pylon (WBNP) configuration from the Second AIAA Drag Prediction Workshop (DPW-2), which is a wide-body Airbus-type transport aircraft model, are performed. The computational results are compared with the experimental results from ONERA S2MA transonic wind tunnel in France and the computational results from two other CFD software:CFL3D and TRIP2.0 (The TRIP2.0 is developed in China Aerodynamics Research and Development Center). The final results show that the code we developed can be used to obtain coincident result with experiment and other CFD softwares, showing preliminarily that our code is reliable.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号