首页> 中文期刊> 《西北大学学报:自然科学版》 >一种新的癫痫脑电融合特征提取方法

一种新的癫痫脑电融合特征提取方法

     

摘要

癫痫是一种常见的大脑神经紊乱疾病,癫痫性发作主要由大脑中反常的神经元的超同步放电引起。为了更好地完成癫痫性发作的自动检测,文中提出了一种新的癫痫脑电融合特征提取方法。一方面,在基于Hjorth参数的振幅移动性与振幅复杂度的基础上,结合Hilbert变化提出了一种新的频率移动性与频率复杂度,然后将他们合成定义为改进的Hjorth参数特征;另一方面,结合二阶差分提出了一种改进的二阶差分样本熵。最后将改进的Hjorth参数特征与二阶差分样本熵一起作为融合特征放入超限学习机(ELM)中进行分类。数值实验结果表明,文中所提出的融合特征与ELM结合的癫痫性发作的自动检测方法与已有方法相比,检测性能有了很大提高,准确率可达到97.42%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号