首页> 中文期刊> 《船舶与海洋工程学报(英文版)》 >材料特性对输送脉动流体的粘弹性轴向功能梯度管非线性动力行为的影响(英文)

材料特性对输送脉动流体的粘弹性轴向功能梯度管非线性动力行为的影响(英文)

     

摘要

The nonlinear dynamic behaviors of viscoelastic axially functionally graded material(AFG) pipes conveying pulsating internal flow are very complex. And the dynamic behavior will induce the failure of the pipes, and research of vibration and stability of pipes becomes a major concern. Considering that the elastic modulus, density, and coefficient of viscoelastic damping of the pipe material vary along the axial direction, the transverse vibration equation of the viscoelastic AFG pipe conveying pulsating fluid is established based on the Euler-Bernoulli beam theory. The generalized integral transform technique(GITT) is used to transform the governing fourth-order partial differential equation into a nonlinear system of fourth-order ordinary differential equations in time. The time domain diagram, phase portraits, Poincaré map and power spectra diagram at different dimensionless pulsation frequencies, are discussed in detail, showing the characteristics of chaotic, periodic, and quasi-periodic motion. The results show that the distributions of the elastic modulus, density, and coefficient of viscoelastic damping have significant effects on the nonlinear dynamic behavior of the viscoelastic AFG pipes. With the increase of the material property coefficient k, the transition between chaotic, periodic, and quasi-periodic motion occurs, especially in the high-frequency region of the flow pulsation.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号