首页> 中文期刊> 《集成技术》 >基于多光谱和面部多区域联合的人脸活体检测算法

基于多光谱和面部多区域联合的人脸活体检测算法

     

摘要

在常见的人脸活体检测应用场景中,绝大多数相关技术聚焦于RGB图像或IR图像,但是这些图像缺乏足够的生物特征,容易受到层出不穷的假体人脸攻击。该文提出了一种基于面部多区域联合的Transformer模型,并将多光谱成像技术引入人脸活体检测任务,旨在获取人脸的独特生物特征,增加与假体的可区分性,进而提高活体检测准确率。多光谱图像拓宽了光谱范围,可获取物体更为丰富的反射特性,通过逐像元进行光谱归一化操作,可降低光照强度变化带来的影响,增强人脸反射特征区域的一致性。该文提出的算法选取多个人脸核心区域(如眼睛、鼻子、嘴巴、脸颊等)作为深度学习模型输入,构建了基于Transformer的神经网络模型,同时获取人脸局部区域特征和区域间关联特征,整合成完备的人脸生物特征。在自建的多光谱人脸数据集上,该文提出的方法获得了95.72%的活体检测准确率及5.10%的活体检测错分率,优于常用的人脸活体检测模型。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号