首页> 中文期刊> 《计算机科学与探索》 >融合行为模式的Android恶意代码检测方法

融合行为模式的Android恶意代码检测方法

     

摘要

基于API调用序列的Android恶意代码检测方法大多使用N-gram和Markov Chain来构建行为特征实现恶意代码检测,但这类方法构造的特征序列长度受限且包含不相关的调用序列,检测精度不高。提出了一种基于行为模式的Android恶意代码检测方法。首先,通过调用序列约简和调用序列合并,提取了最长敏感API调用序列;然后,定义了加权支持度,在此基础上提出了改进的序列模式挖掘算法,挖掘不同类别样本中具有高区分度的序列模式作为分类特征;最后,使用不同的机器学习算法构建分类器实现恶意代码检测。实验结果表明,提出的方法在Android恶意代码检测中的精确度达到了96.11%,比基于API调用数据的两种同类恶意代码检测方法分别提高了4.60个百分点和2.11个百分点。因此,提出的方法能有效检测Android恶意代码。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号