首页> 中文期刊> 《计算机应用》 >基于多层支持向量机的极化合成孔径雷达特征分析与分类

基于多层支持向量机的极化合成孔径雷达特征分析与分类

     

摘要

为了充分利用极化合成孔径雷达(SAR)图像不同极化特征对不同地物目标类型的刻画能力,提出一种基于多层支持向量机(SVM)的极化SAR特征分析与分类方法.该方法首先通过特征分析确定适合不同地物类型的最佳特征子集;然后采用分层分类树的方式,根据每一种地物类型的特征子集逐层进行SVM分类;最终得到整体分类结果.RadarSAT-2极化SAR图像分类实验结果表明所提方法水域、耕地、林地、城区4类地物分类精度为85%左右,总体分类精度达到86%.该算法充分利用了不同地物目标类型的特性,提高了分类精度,也降低了算法时间复杂度.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号