首页> 中文期刊> 《计算机辅助设计与图形学学报》 >基于SURF的高密度人群计数方法

基于SURF的高密度人群计数方法

     

摘要

为了解决在高密度人流或视场开阔环境下人群计数准确率低的问题,提出一种基于SURF的高密度人群计数方法.首先采用最小生成树改进了传统的基于密度的聚类算法,使其最小搜索域自适应聚类数据的分布;在此基础上实现运动人群的SURF特征点分类,并以此构建运动人群的特征向量,用支持向量回归机实现了对高密度人群的数量统计.实验结果表明,该方法对高密度人群的计数有较高的准确率和鲁棒性.%This paper presents a SURF-based method for high-density crowd counting, focusing on overlaying the low counting accuracy in a high-density crowd or open environment. The traditional density-based clustering algorithm (DBSCAN) by adopting minimum spanning tree (MST) is improved, making its minimal search domain adaptive to the distribution of clustering data. Then the SURF features of moving crowd through the improved DBSCAN algorithm is classified. An eigenvector which can represent the moving crowd is built on the clustering results. Finally, the number of crowd through a support vector regressor (e-SVR) is got. The experimental results confirm that the proposed method have a high accuracy and robustness to the high-density crowd counting.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号