首页> 中文期刊> 《中南大学学报》 >Flow Stress Behavior of Cu13Zn Alloy Deformed at Elevated Temperature

Flow Stress Behavior of Cu13Zn Alloy Deformed at Elevated Temperature

         

摘要

The flow stress behavior of Cu13Zn alloy was investigated by compression tests carried out at 650 ℃, 700 ℃, 750 ℃, 850 ℃, and constant strain rates of 0.05 s -1 , 0.1 s -1 , 0.5 s -1 , 1 s -1 , 5 s -1 , respectively. The results show that the flow stress increases with the increase of strain and reaches a steady state stress, and the saturated stress ( σ s) increases with the increase of the strain rate and the decrease of temperature. Flow stress curves of the alloy deformed at elevated temperatures can be simulated effectively by the model proposed by Zhou and Clode, and the flow stress is described as a function of strain, strain rate and temperature. Material constants values are: Q =270.43 kJ/mol, α =0.020 94, A =1.747×10 11 s -1 and n = 3.549 mm 2·N -1 , the deformation mechanisms of the alloy are self diffusion and dynamic recovery.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号