首页> 中文期刊> 《中南大学学报 》 >Optimization and experimental research on a new-type short cylindrical cup-shaped harmonic reducer

Optimization and experimental research on a new-type short cylindrical cup-shaped harmonic reducer

             

摘要

In order to obtain a new-type short cylindrical cup-shaped flexspline that can be applied to space mechanisms,the APDL language of ANSYS software was employed to develop a parameterized equivalent contact model between a flexspline and a wave generator. The validity of the parameterized equivalent contact model was verified by comparing the results of the analytic value of the contact model and the value calculated by the theoretical formula. The curvilinear trend of stress was obtained by changing the structural parameter of the flexspline. Based on the curvilinear trend of stress,multi-objective optimizations of key structural parameters were achieved. Flexspline,wave generator,and circular spline of a new 32-type short cylindrical cup-shaped harmonic reducer were designed and manufactured. A performance test bench to carry out tests on the harmonic reducer was designed. Contrast experiments were implemented to determine the efficiency of the new 32-type short cylindrical cup-shaped harmonic reducer and the conventional 32-type harmonic reducer under different conditions. The experimental results reveal that there is approximately equality in terms of efficiency between the new 32-type short cylindrical cup-shaped harmonic reducer and the conventional 32-type harmonic reducer. The volume of the flexspline of the new 32-type short cylindrical cup-shaped harmonic reducer is reduced by approximately 30% through multi-objective optimization. When the new 32-type short cylindrical cup-shaped harmonic reducer is used on the wheel of a rover prototype,the mass of the wheel hub is decreased by 0.42 kg. Test analysis of wheel motion verifies that the new 32-type short cylindrical cup-shaped harmonic reducer can meet the requirements regarding bearing capacity and efficiency.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号