首页> 中文期刊>中南大学学报 >Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation

Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation

     

摘要

Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated.Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heating and viscous dissipation.Governing nonlinear problems of velocity, temperature and nanoparticle concentration are solved via homotopic procedure.Convergence is examined graphically and numerically. Results of temperature and nanoparticle concentration are plotted and discussed for various values of material parameters, Prandtl number, Lewis number, Newtonian heating parameter, Eckert number and thermophoresis and Brownian motion parameters. Numerical computations are performed. The results show that the change in temperature and nanoparticle concentration distribution functions is similar when we use higher values of material parameters β1 andβ2. It is seen that the temperature and thermal boundary layer thickness are increasing functions of Newtonian heating parameter γ.An increase in thermophoresis and Brownian motion parameters tends to an enhancement in the temperature.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号