首页> 中文期刊> 《应用气象学报》 >月尺度气温可预报性对资料长度的依赖及可信度

月尺度气温可预报性对资料长度的依赖及可信度

         

摘要

利用全国518个站1960—2011年逐日气温观测资料和160个站1983—2012年月尺度气温客观预测数据,基于非线性局部 Lyapunov 指数和非线性误差增长理论,研究中国区域月尺度气温可预报性期限对资料序列长度的依赖性。结果表明:气温可预报性期限对资料序列的长度有一定程度的依赖性,在西北、东北及华中地区尤为明显。平均而言,45年的资料序列长度才能够得到稳定合理的可预报性期限。为了验证气温可预报期限计算结果的可信度,将月尺度气温的可预报性期限与客观气候预测方法的预报评分技巧进行对比,发现两者结果非常一致。其中,由观测资料得到的1月气温的可预报性期限明显低于7月,1月客观气候预测方法的预报评分技巧也明显低于7月,且 1月(7月)预报评分的空间分布型与 1月(7月)气温可预报性期限的空间分布型较为一致。因此,利用非线性局部 Lyapunov 指数和台站逐日观测资料分析气温的可预报性期限结果是可信的。%Under the background of global warming,extreme temperature events in China are frequent in recent years,which cause serious influence on economic development and daily life of people.For the evolution of monthly temperature is influenced by initial forcing and boundary forcing,its variation is complex,and brings great challenge to climate prediction.A quantitative investigation is carried out on the monthly tem-perature predictability limit based on the nonlinear local Lyapunov exponent and daily temperature from 1960 to 2011 at 518 stations in China.But to get robust nonlinear local Lyapunov exponent,there should be enough observations.How much can the length of data series affect the robustness of monthly tempera-ture predictability limit?And what about the credibility of monthly temperature predictability limit?These two questions need to be further analyzed. Based on the nonlinear local Lyapunov exponent and nonlinear error growth dynamics,quantitative a-nalysis is carried out,and it shows that the robustness of monthly temperature predictability limit depends on the length of data series,especially in Northwest China,Northeast China and Central China.In west-ern Inner Mongolia,south of the Yangtze River and South China,data series need to be more than 30 years long.On average,45-year data series can ensure the stable monthly temperature predictability limit.The length of data series of 518 meteorological stations chosen in this study is 52 years,i.e.,they all fit the basic need to evaluate monthly temperature predictability limit.To verify the credibility of monthly tem-perature predictability limit,the spatial pattern of monthly temperature predictability limit and two objec-tive monthly temperature prediction results are compared.One method is persistent prediction,and the other is monthly dynamic extended range forecast based on climate models.It shows that the spatial distri-bution of monthly temperature predictability limit and prediction skill is very consistent.The monthly tem-perature predictability limit evaluated by observation in January is lower than that in July.Similarly,the prediction skill in January is also lower than that in July.What’s more,the spatial pattern of objective cli-mate prediction skill in January (July)is similar to the spatial pattern of monthly temperature predictabili-ty limit in the respective month.Thus,the monthly temperature predictability limit estimated by nonlinear local Lyapunov exponent and daily temperature from 1960 to 2011 at 518 stations is scientific and credible. And it provides important reference for improvement of monthly temperature prediction.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号