首页> 中文期刊> 《应用数学与计算数学学报(英文)》 >Parallel Implicit-Explicit General Linear Methods

Parallel Implicit-Explicit General Linear Methods

     

摘要

High-order discretizations of partial differential equations(PDEs)necessitate high-order time integration schemes capable of handling both stiff and nonstiff operators in an efficient manner.Implicit-explicit(IMEX)integration based on general linear methods(GLMs)offers an attractive solution due to their high stage and method order,as well as excellent stability properties.The IMEX characteristic allows stiff terms to be treated implicitly and nonstiff terms to be efficiently integrated explicitly.This work develops two systematic approaches for the development of IMEX GLMs of arbitrary order with stages that can be solved in parallel.The first approach is based on diagonally implicit multi-stage integration methods(DIMSIMs)of types 3 and 4.The second is a parallel generalization of IMEX Euler and has the interesting feature that the linear stability is independent of the order of accuracy.Numerical experiments confirm the theoretical rates of convergence and reveal that the new schemes are more efficient than serial IMEX GLMs and IMEX Runge-Kutta methods.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号