首页> 中文期刊> 《智能计算机与应用》 >基于模糊神经网络的访问控制风险量化方法

基于模糊神经网络的访问控制风险量化方法

     

摘要

访问控制系统中风险量化具有不确定性,非线性等特点,无法确定具有良好效果的求解规则.本文将模糊理论、人工神经网络、小波分析及量子粒子群优化算法有机结合,提出了模糊小波神经网络(fuzzy wavelet neural network,Fuzzy WNN)的风险量化方法,通过模糊综合评判法对主体、客体等的属性信息进行评价量化,作为小波神经网络的输入量,小波神经网络的输出量为量化的风险值,并对小波神经网络的训练算法进行改进优化.仿真结果表明,本文提出的算法可对访问请求风险实现有效量化,克服现有的量化方法所存在的主观随意性大、结论模糊等缺陷.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号