首页> 中文期刊> 《信息技术与信息化》 >基于KNN算法的不良步态分类

基于KNN算法的不良步态分类

     

摘要

针对不良的步态会对下肢的关节产生不利的影响(加重行走的负担,能量消耗过快等),以及加重患病的风险,提出了利用KNN(k-nearest neighbor)算法对足外8和足内8两种不良步态与正常步态(对照组)进行分类学习,获取分类模型。三种步态的三维步态数据是从17名受试者在正常行走期间通过3D运动捕捉系统获得的,KNN模型对三种步态识别的总正确率为81.7%,对足外8步态的正确率为92.8%以及足内8的正确率为91.0%。模型的正确率较为准确,可以为矫正不良步态提供有力支持、减少不良步态的检测成本。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号