首页> 中文期刊> 《信息技术与信息化》 >基于改进的DeepLabv3p网络的轮胎胎面花纹缺陷分割算法

基于改进的DeepLabv3p网络的轮胎胎面花纹缺陷分割算法

     

摘要

为了解决DeepLabv3p网络在检测汽车轮胎胎面花纹图像上呈现的边缘分割模糊、模型参数量大、训练速度慢等问题,提出了一种融合双重十字交叉注意力模块(URCCA)的轻量级图像分割算法——DeepLabNLAS。首先,采用STDC2代替DeepLabv3p网络中的特征提取网络来降低模型的参数量和体积,提升模型的训练速度;然后,将URCCA模块与ASPP(atous spatial pyramid pooling)模块并联来获取长距离密集的上下文信息;之后,将两个模块的特征图相融合送入解码器进行上采样恢复至输入图像的分辨率大小。实验结果表明,本文改进算法在语义分割公用数据集城市景观数据集Cityscapes以及本文数据集Tread_pattern上的效果都优于DeepLabv3p网络。在公用数据集Cityscapes上,DeepLabNLAS比DeepLabv3p网络和文献[9]的平均交并比分别提高了1.22%和2.68%,在数据集Tread_pattern上分别提高了2.13%和3.41%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号