首页> 中文期刊> 《工业控制计算机》 >融合SDP和CNN的旋转机械齿轮箱故障诊断方法

融合SDP和CNN的旋转机械齿轮箱故障诊断方法

     

摘要

针对旋转机械齿轮箱的齿轮与轴承故障,提出一种融合对称点图案SDP(Symmetrized Dot Pattern,SDP)和卷积神经网络CNN(Convolutional Neural Network)的故障诊断方法.首先,以模拟实验台MCDS获取大量故障实验数据,经过预处理产生的一维振动信号再经SDP转化为特征信息丰富的二维雪花图像;然后将SDP图像输入至CNN自动提取特征,再用分类器识别故障特征.实验证明,该方法能够有效和准确地识别齿轮箱的故障,各类故障的识别正确率在96%以上.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号