首页> 中文期刊> 《电气自动化》 >集成机器学习预测算法的短期负荷预测

集成机器学习预测算法的短期负荷预测

     

摘要

为了提供与电力负荷相匹配的稳定高效的能源,减少电能因难以储存而造成的浪费,提出一种基于注意力机制、一维卷积神经网络和长短期记忆网络并行结合的负荷预测模型。首先,对山西省某市的负荷特征数据预处理;然后将数据并行输入到模型中进行训练,对模型优化进而获得更准确的短期预测能力;最后将所提模型与其他预测模型在不同的时间步长下进行预测对比。结果表明,所提方法在预测中具有更高的准确率和一定的普适性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号