首页> 中文期刊> 《图书情报知识》 >微博话题识别中基于动态共词网络的文本特征提取方法

微博话题识别中基于动态共词网络的文本特征提取方法

     

摘要

本文针对微博文本的简短、动态性等特征,提出一种新的文本特征提取方法,提升微博话题识别任务中文本聚类算法效果.利用词项共现的思想,针对微博时序文本构建动态共词网络.在动态共词网络中,边权重随着时间推移而线性衰减,并在此基础上利用网络的度中心性计算微博文本特征权重.从新浪微博中采样构建实验数据集进行实验,结果表明动态共词网络特征提取方法相较于文档频率方法,更适宜于提取微博文本特征,能取得更好的微博话题识别效果.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号