首页> 中文期刊> 《工程与科学中的计算机建模(英文)》 >An Experimental and Numerical Study on the Ballistic Performance of Multi-Layered Moderately-Thick Metallic Targets against 12.7-mm Projectiles

An Experimental and Numerical Study on the Ballistic Performance of Multi-Layered Moderately-Thick Metallic Targets against 12.7-mm Projectiles

     

摘要

Themain goal of this work is to study the ballistic performance ofmulti-layered moderately-thick metallic targets.Several target configurations have been considered in thiswork,with various types of interlayer connection(spaced,contacted and adhesive)and the number of layers(four and eight),and the influence of target configurations on ballistic performance has been studied experimentally and numerically.In the experiments,the targets were impacted by 12.7-mm projectiles at a velocity around 820 m/s.The experimental results show that,with similar total thickness,the contacted and adhesive targets exhibit better ballistic performance than the monolithic targets,and the four-layered targets are better than the eight-layered targets with the same connection type.To explore the ballistic resistance mechanism,numerical method has been used to simulate the penetration process of each target.The numerical results indicate that petal formation and friction have significant influence on targets’ballistic performance.Friction has stronger influence on themulti-layered targets than on themonolithic ones.According to the numerical results,about 14%of projectile’s initial kinetic energy is dissipated by friction during penetrating the four-layered contacted target,which is proved to be the most effective type of target studied in thiswork.The results also indicate that,in contrast to common understanding,friction plays an important role even when the impact velocity is significantly higher than the ballistic limit.The outcome of this work may provide useful information for a better understanding of ballistic resistant mechanisms and more efficient utilization of multi-layered metallic targets in armor structural design.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号