首页> 中文期刊> 《力学国际期刊(英文)》 >Pipe Flow of Suspensions Containing Bubbles

Pipe Flow of Suspensions Containing Bubbles

         

摘要

The steady laminar pipe flow of a suspension with a gas volume fraction ∅≤0.5 and small or intermediate bubble deformations in long, and straight sections of a circular pipe is calculated. The calculations are based on the constitutive equation that was originally derived for dilute emulsions and further developed for concentrated suspensions containing bubbles. In contrast to the literature, an analytical procedure is used to determine the solution of a pipe flow more accurately. The results are presented and discussed with respect to the Reynolds number Re and capillary number Ca. If Ca 1, a bubble suspension has a parabolic velocity profile indicating a Newtonian rheology. If Ca ≈1, two regimes of flow are observed in agreement with the literature;that is, an inner plug flow where deformation rates are low and an outer flow where deformation rates are high. These results imply that, if Ca ∅?and that, if Ca ≥1, the opposite effect occurs;that is, the Reynolds number Re increases with increasing gas volume fraction.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号