首页> 中文期刊> 《半导体科学与信息器件(英文)》 >Analysis of the Effect of Radiation Defects by Low-energy Protons on Electrophysical Properties of Silicon N^(+)-P-P^(+) Structure

Analysis of the Effect of Radiation Defects by Low-energy Protons on Electrophysical Properties of Silicon N^(+)-P-P^(+) Structure

         

摘要

Nowadays,radiation engineering is a promising direction in the creation of semiconductor devices.The proton irradiation is used to controllably change the optical,electrical,recombination,mechanical and structural properties of the semiconductors.Low-energy protons make it possible to purposefully change material properties near the surface where the n^(+)-p junction is located.In this paper,the impact of low-energy protons on the electro physical parameters of n+-p-p+silicon photoelectric converters(SPC)is analyzed.The current-voltage characteristics and switching time of these SPCs are measured.The switching time is determined using rectangular bipolar voltage pulses with an amplitude of 10 mV,a frequency of 200 kHz,or a frequency of 1 MHz.A theoretical and experimental analysis of the obtained results is performed.The comparison of experimental data with the results of calculations shows that protons with an energy of 180 keV and a dose of 10×15 cm^(-2) create two regions in the space charge region of the n^(+)-p junction with different switching times of 4.2×10^(-7) s and 5.5×10^(-8) s.SPC frequency characteristics have been improved by reducing the effective lifetime by 5-10 times.This effect can be used to create high-speed photodiodes with an operating modulation frequency of 18 MHz.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号