首页> 中文期刊> 《机械工程学报》 >基于粒子群优化神经网络的水下链式机器人直航阻力预报

基于粒子群优化神经网络的水下链式机器人直航阻力预报

         

摘要

多单体水下机器人串联组成的水下链式机器人具有航行效率高、稳定性能好、搭载能力强等优势,对其直航阻力的精确预报可实现更有效的运动控制和更合理的动力编组。针对由于水下链式机器人各单体间耦合关系复杂及使用计算流体力学分析阻力耗时较长导致无法快速准确进行阻力预报问题,开展了水下链式机器人直航阻力预报研究。利用计算流体力学分析获得大量输入量(单体数量、航速和单体间间距)与输出量(直航阻力)样本数据,使用BP神经网络建立输入量与输出量模型关系,并通过粒子群算法优化神经网络的初始权值和偏差以改善BP神经网络易陷入局部极值点和过拟合等问题。由大量测试样本的预报结果可知:基于粒子群优化的BP神经网络算法比传统BP神经网络算法预报结果更准确,在给定不同速度和间距测试中均方误差分别降低了2.04×10–5和7.40×10–6;在5单体水下链式机器人以0.25 m/s2的加速度做匀加速运动过程中,基于粒子群优化的BP神经网络模型预报结果的平均相对误差为0.42%,精度较高。试验结果说明所提方法是可行且有效的。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号