...
首页> 外文期刊>Complexity >A Novel Design of a Neural Network-Based Fractional PID Controller for Mobile Robots Using Hybridized Fruit Fly and Particle Swarm Optimization
【24h】

A Novel Design of a Neural Network-Based Fractional PID Controller for Mobile Robots Using Hybridized Fruit Fly and Particle Swarm Optimization

机译:一种新颖的基于神经网络的分数PID控制器,用于使用杂交果蝇和粒子群优化的移动机器人

获取原文
           

摘要

The design of a swarm optimization-based fractional control for engineering application is an active research topic in the optimization analysis. This work offers the analysis, design, and simulation of a new neural network- (NN) based nonlinear fractional control structure. With suitable arrangements of the hidden layer neurons using nonlinear and linear activation functions in the hidden and output layers, respectively, and with appropriate connection weights between different hidden layer neurons, a new class of nonlinear neural fractional-order proportional integral derivative (NNFOPID) controller is proposed and designed. It is obtained by approximating the fractional derivative and integral actions of the FOPID controller and applied to the motion control of nonholonomic differential drive mobile robot (DDMR). The proposed NNFOPID controller’s parameters consist of derivative, integral, and proportional gains in addition to fractional integral and fractional derivative orders. The tuning of these parameters makes the design of such a controller much more difficult than the classical PID one. To tackle this problem, a new swarm optimization algorithm, namely, MAPSO-EFFO algorithm, has been proposed by hybridization of the modified adaptive particle swarm optimization (MAPSO) and the enhanced fruit fly optimization (EFFO) to tune the parameters of the NNFOPID controller. Firstly, we developed a modified adaptive particle swarm optimization (MAPSO) algorithm by adding an initial run phase with a massive number of particles. Secondly, the conventional fruit fly optimization (FFO) algorithm has been modified by increasing the randomness in the initialization values of the algorithm to cover wider searching space and then implementing a variable searching radius during the update phase by starting with a large radius which decreases gradually during the searching phase. The tuning of the parameters of the proposed NNFOPID controller is carried out by reducing the MS error of 0.000059, whereas the MSE of the nonlinear neural system (NNPID) is equivalent to 0.00079. The NNFOPID controller also decreased control signals that drive DDMR motors by approximately 45 percent compared to NNPID and thus reduced energy consumption in circular trajectories. The numerical simulations revealed the excellent performance of the designed NNFOPID controller by comparing its performance with that of nonlinear neural (NNPID) controllers on the trajectory tracking of the DDMR with different trajectories as study cases.
机译:基于群体优化的工程应用的分数控制的设计是优化分析中的主动研究主题。这项工作提供了基于新的神经网络(NN)非线性分数控制结构的分析,设计和仿真。在隐藏和输出层中使用非线性和线性激活功能的合适布置,分别在不同隐藏层神经元之间的适当连接权重,新类非线性神经分数比例整体衍生物(NNFOPID)控制器提出和设计。通过近似FoPID控制器的分数衍生和积分作用并应用于非完整差分驱动移动机器人(DDMR)的运动控制来获得。除了分数积分和分数衍生阶数之外,所提出的NNFoPID控制器的参数包括衍生,积分和比例的增益。这些参数的调谐使得这种控制器的设计比古典PID更困难。为了解决这个问题,通过改进的自适应粒子群优化(Mapso)的杂交和增强的水果飞行优化(Effo)来调整NNFoPID控制器的参数,提出了一种新的群优化算法,即Mapso-Effo算法,即提出了一种新的Sparm优化算法。首先,我们通过添加具有大量粒子的初始运行阶段,开发了修改的自适应粒子群优化(MAPSO)算法。其次,通过增加算法的初始化值中的随机性来修改传统的果蝇优化(FFO)算法,以覆盖更广泛的搜索空间,然后在更新阶段实现变量搜索半径,通过从大的半径开始,这逐渐减小在搜索阶段。通过减小0.000059的MS误差来进行所提出的NNFoPID控制器的参数的调整,而非线性神经系统的MSE(NNPID)相当于0.00079。与NNPID相比,NNFoPID控制器还减少了驱动DDMR电动机的控制信号,从而降低了圆形轨迹中的能量消耗。数字模拟通过将其性能与非线性神经(NNPID)控制器的性能进行比较,揭示了设计的NNFoPID控制器的优异性能,以与不同轨迹的DDMR的轨迹跟踪作为研究案例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号