首页> 中文期刊> 《创新光学健康科学杂志(英文)》 >LGNet:Local and global representation learning for fast biomedical image segmentation

LGNet:Local and global representation learning for fast biomedical image segmentation

     

摘要

Medical image segmentation plays a crucial role in clinical diagnosis and therapy systems,yet still faces many challenges.Building on convolutional neural networks(CNNs),medical image segmentation has achieved tremendous progress.However,owing to the locality of convolution operations,CNNs have the inherent limitation in learning global context.To address the limitation in building global context relationship from CNNs,we propose LGNet,a semantic segmentation network aiming to learn local and global features for fast and accurate medical image segmentation in this paper.Specifically,we employ a two-branch architecture consisting of convolution layers in one branch to learn local features and transformer layers in the other branch to learn global features.LGNet has two key insights:(1)We bridge two-branch to learn local and global features in an interactive way;(2)we present a novel multi-feature fusion model(MSFFM)to leverage the global contexture information from transformer and the local representational features from convolutions.Our method achieves state-of-the-art trade-off in terms of accuracy and efficiency on several medical image segmentation benchmarks including Synapse,ACDC and MOST.Specifically,LGNet achieves the state-of-the-art performance with Dice's indexes of 80.15%on Synapse,of 91.70%on ACDC,and of 95.56%on MOST.Meanwhile,the inference speed attains at 172 frames per second with 224-224 input resolution.The extensive experiments demonstrate the effectiveness of the proposed LGNet for fast and accurate for medical image segmentation.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号