首页> 中文期刊> 《计算技术与自动化》 >基于深度学习的X光图像智能审像系统

基于深度学习的X光图像智能审像系统

     

摘要

针对X光安检机人工审核图片存在的效率低、误检和漏检等问题,设计并实现了一套基于Mask R-CNN算法的X光图片智能审像系统.实现了X光图像采集、数据汇聚、分析处理、违禁物品自动检测、数据存储等功能.通过分析比较,选择ResNet101作为BackBone训练网络,选取6000张X光图片作为样本,对刀、枪、液体瓶、手机、充电宝等五类违禁品进行标注.对训练参数优化调整,训练出违禁品的Ma s k R-CNN模型.在测试集上使用COCO评估方法,检出违禁品的平均精准率mAP50达到了0.83,明显高于Faster R-CNN、YOLOv3、SSD513等算法,具有实际工程应用价值.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号