首页> 中文期刊> 《计算机系统应用》 >单目视觉下基于逆投影空间的车辆细粒度识别

单目视觉下基于逆投影空间的车辆细粒度识别

     

摘要

当前车辆识别大多采用深度学习方法,直接输入图像数据进行训练以获得车辆分类的深度网络,由于图像本身存在透视形变及尺度变化,因此不得不采取大量不同类型数据进行训练,同时也无法获取车辆相关的物理信息.为了改进上述问题,本文提出基于逆投影空间训练的车辆细粒度识别方法.首先利用标定信息及几何约束,对单目投影下的车辆构建精细化的三维包络框.然后将车辆三维包络展开,获得规范化及标准化的逆投影空间数据.最后利用深度卷积网络对这些展开的规范数据进行训练分类及回归,获得5种常见车辆细分类结果及对应的物理尺寸信息.实验结果表明,与传统端到端的深度学习车辆分类算法相比较,本文算法在利用更少的训练数据的前提下,能有效的提升车辆分类准确率,同时可获取车辆三维物理尺寸信息.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号