首页> 中文期刊> 《计算机系统应用》 >基于改进残差网络的扬尘图像识别方法

基于改进残差网络的扬尘图像识别方法

     

摘要

当前利用深度学习方法进行扬尘图像识别的研究较少,一些传统的方法使得扬尘图像的识别率较低.针对这种情况,提出一种基于改进残差网络的扬尘识别方法.该方法将ResNet-50网络应用到扬尘数据集中,并对其网络结构进行了改进.加入空间金字塔池化以解决输入图像尺寸不固定的问题,并且将金字塔池的策略改为平均池化,将扩大特征图的方法应用到主干网络中,有利于提取到更加细粒度的特征,提升模型的性能,从而提高识别率.实验结果表明,该方法具有很高的精确度,为扬尘识别提供了一种有效的方案.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号