首页> 中文期刊> 《计算机科学》 >基于正交非负矩阵分解的K-means聚类算法研究

基于正交非负矩阵分解的K-means聚类算法研究

     

摘要

为提高K-means聚类算法在高维数据下的聚类效果,提出了一种基于正交非负矩阵分解的K-means聚类算法.该算法对原始数据进行非负矩阵分解,并分别通过改进的Gram-Schmidt正交化和Householder正交化加入了正交约束,以保证低维特征的非负性,增加数据原型矩阵的正交性,然后进行K-means聚类.实验结果表明,基于IGS-ONMF和H-ONMF的K-means聚类算法在处理高维数据上具有更好的聚类效果.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号