首页> 中文期刊> 《计算机科学》 >主动学习在推荐系统中的应用

主动学习在推荐系统中的应用

     

摘要

近年来,推荐技术迅速发展,日趋成熟.但是,多数推荐算法都建立在一个理想的假设下,即有足够多的样本数据供我们训练出成熟的模型用于预测或推荐.在实际工业化生产中,一方面,大多数的用户和项目只拥有极少量的标签信息;另一方面,即使依靠历史积累形成的数据集,在分布上也十分不均衡,难以学习出可靠的推荐模型.主动学习的思想认为每个项目给系统带来的"好处"是不等的,因而可以通过特定策略选择某些项目,借助用户与项目之间的交互行为来主动获取相关的偏好信息.应用在推荐系统中的主动学习试图选择数量更少、质量更高的样本来训练模型,既能提高用户体验,又能免受数据集不均衡的束缚.文中综述了近年来主动学习在推荐系统中的应用,并对其发展趋势进行分析.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号