首页> 中文期刊> 《计算机科学与应用》 >基于BERT的子词级中文文本分类方法

基于BERT的子词级中文文本分类方法

     

摘要

随着时代的发展,网络中文本数量飞速增长,为了高效地提取和处理,对文本进行分类必不可少。该文以BERT模型为基础,提出了一种子词级的中文文本分类方法。在该方法中,使用子词级遮蔽方法改进原有遮蔽语言模型,使其能有效遮蔽完整中文单词,增加了BERT模型对中文文本的词向量表达能力。同时新加入了中文单词位置嵌入,弥补了BERT模型对中文单词位置信息的缺失。实验结果表明,使用了该文文本分类方法的BERT模型,在多个中文数据集中对比其他模型均拥有最好的分类效果。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号