首页> 中文期刊> 《计算机科学与应用》 >基于Grad-CAM与B-CNN的细粒度图像分类方法研究

基于Grad-CAM与B-CNN的细粒度图像分类方法研究

     

摘要

细粒度图像具有类间差异小,类内差异大的特点。图像之间的差异主要存在于细微的局部区域,局部区域定位及其代表性特征提取成为细粒度图像分类的主要研究问题之一。本文基于Grad-CAM和双线性卷积神经网络B-CNN模型对细粒度图像分类方法进行研究,它利用Grad-CAM模型定位原图像中的显著区域,并裁剪出显著性区域图像作为双线性CNN的输入,融合全局和局部的特征,从而完成分类。在CUB-200-2011、Stanford Dogs和Stanford Cars三个数据集上的实验表明,相较于传统模型,该方法能够更加准确定位图像特征显著区域,具有更好的分类效果。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号