首页> 中文期刊> 《计算机科学与应用》 >基于时序知识图谱补全的关系预测

基于时序知识图谱补全的关系预测

     

摘要

知识图谱是对客观世界中实体、概念及其关系的图形描述。传统知识图谱主要关注静态的常识性知识,缺乏对时间信息的考虑,难以处理网络空间中的动态演化和时间信息。时序知识图谱强调将时间纳入知识,通过引入时间戳和四元数嵌入管理动态时态知识,为紧密时间耦合的应用提供支持。现有方法侧重于高频重复事件,可能导致对新事件的错误判断。对此,我们提出了时空知识感知网络(SKAN),分为主体空间感知、事件序列感知和关系表征学习三个模块。SKAN通过全局关联图卷积挖掘主体关联性,进行时序学习,并通过关系表征学习预测未来关系,为时序知识图谱学习提供了新的架构。我们在四个国际事件数据集上进行了实验,实验结果表明,我们的方法优于目前的主流方法。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号