首页> 中文期刊> 《计算机工程》 >基于SVD++与标签的跨域推荐模型

基于SVD++与标签的跨域推荐模型

     

摘要

在现有多数跨域推荐模型中,用户不能给指定项目添加标签,并且建立模型时未考虑用户的历史标签,导致推荐误差变大.针对上述问题,构建基于SVD++模型并融合标签推荐的跨域推荐模型TagSVD++.该模型继承SVD++模型利用评分数据预测的特点,加入用户和项目标签信息,通过标签使用次数反映用户喜好和项目特征,并且引入热门惩罚系数避免热门标签和项目对推荐预测的干扰.在真实电影和图书网站相关数据模拟的跨领域数据集上进行实验,结果表明,TagSVD++模型能有效提高跨域推荐的准确性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号