首页> 中文期刊> 《计算机工程与设计》 >基于网络访问行为的混合阶Markov预测模型

基于网络访问行为的混合阶Markov预测模型

     

摘要

随着WWW的迅速发展和网络用户的急剧增加,准确预测Web用户的访问行为对减小用户的感知延时,实现个性化推荐等具有重要的作用.无论是Markov模型还是其任何一种变种,高阶模型具有较好的预测性能.然而,高阶模型通常有较高的状态空间复杂度.提出了一种新的混合阶Markov模型(HMPM),将前缀相同的序列共享存储,降低了状态空间复杂度.仿真实验结果表明,该模型在一定程度上提高了预测准确率,查全率也有所提升.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号