首页> 中文期刊> 《计算机工程与应用》 >深度学习的典型目标检测算法研究综述

深度学习的典型目标检测算法研究综述

     

摘要

目标检测是计算机视觉的一个重要研究方向,其目的是精确识别给定图像中特定目标物体的类别和位置.近年来,深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)所具有的特征学习和迁移学习能力,在目标检测算法特征提取、图像表达、分类与识别等方面取得了显著进展.介绍了基于深度学习目标检测算法的研究进展、常用数据集特点以及性能指标评价的关键参数,对比分析了双阶段、单阶段以及其他改进算法的网络结构和实现方式.阐述了算法在人脸、显著目标、行人、遥感图像、医学图像、粮虫等检测领域的应用进展,结合当前存在的问题和挑战,展望分析了其未来的研究方向.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号