首页> 中文期刊> 《计算机工程与应用》 >基于自动驾驶场景的目标检测算法DFSSD

基于自动驾驶场景的目标检测算法DFSSD

     

摘要

为了提高单阶段目标检测算法对小目标和重叠目标的检测性能,使其能够应用到自动驾驶场景中,提出一种基于SSD(Single Shot Multibox Detector)的深度特征融合算法DFSSD(Deep Fusion based Single Shot Multibox Detector).DFSSD主要从两个角度对SSD算法进行改进:一方面提出一种高效的特征融合方式,在不引入大量参数和过多计算量的情况下,增强了模型的特征表达能力和对困难小目标的检测能力;另一方面引入一种带噪声的训练方式,即在训练时,随机地将样本中未标记的困难正例目标(不易分辨的正例目标)加入训练,以提高算法对复杂背景的抗干扰能力,降低对困难小目标的误检率.在PASCAL VOC2007测试集上,DFSSD300比SSD300的mAP(mean Average Precision)提升了3.7个百分点,在KITTI数据集上,Car类困难目标的AP(Average Precision)值提升了5个百分点,同时与SSD300具有相当的检测速率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号