首页> 中文期刊> 《计算机工程与应用》 >基于递归图和卷积神经网络的脉象分析识别

基于递归图和卷积神经网络的脉象分析识别

     

摘要

在脉象信号分析识别中,时域、频域等分析方法难以挖掘脉象信号的非线性信息,且传统机器学习方法需要人工定义特征,无法进行特征的自学习。提出一种基于无阈值递归图和卷积神经网络的脉象分析识别方法。基于非线性动力学理论,将脉象信号转换为无阈值递归图,通过VGG-16卷积神经网络实现递归图非线性特征的自动提取,并建立脉象分类模型。实验结果表明,该方法分类准确率可达98.14%,与已有的脉象分类方法相比有所提升。该研究为脉象信号分类提供了一种新的思路和方法,对脉诊客观化具有一定的实用价值。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号