首页> 中文期刊> 《计算机工程与应用》 >变异量子粒子群优化算法在系统辨识中的应用

变异量子粒子群优化算法在系统辨识中的应用

     

摘要

为了增加全局搜索能力,避免陷入局部最小,在量子粒子群优化算法(QPSO)中引入变异机制,即基于QPSO的特点,用Cauchy分布分别对全局最优和所有个体极值的平均值进行变异.该算法称为带变异算子的量子粒子群优化算法(MQPSO).通过对一典型的大海捞针类(NiH)问题的试验,证明了MQPSO在全局优化和快速收敛能力上有较大的提高.在此基础上将该算法应用于系统参数辨识中,辨识结果表明该方法具有参数辨识精度高,抗噪声能力强,对输入信号通用性强,也适用于非线性系统参数辫识,具有重要的工程应用价值.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号