首页> 中文期刊> 《计算机工程与应用》 >椭圆曲线中一种计算7P和7kP的改进算法

椭圆曲线中一种计算7P和7kP的改进算法

     

摘要

To raise the efficiency of field operations on elliptic curve, based on the idea of trading multiplications for squares, two improved algorithms are proposed to compute 7P and 7k P directly over GFP in terms of affine coordinates, their computational complexity is I+18M+12S and I+(17k+2)M+(14k+1)S respectively, and the new algorithm's efficiency is improved by 8.3% and 13.5% respectively compared with the best algorithms at present. In addition, based on the same idea, a modified method is given to compute 5k P directly over GFP in terms of affine coordinates, its com-putational complexity is I+(9k+2)M+(14k+1)S , and the efficiency of the new method is improved by 17.2%and 35.7%respectively compared with Xu Kaiping's and MISHRA's method.%为了提高椭圆曲线底层域运算的效率,基于将乘法运算转换为平方运算的思想,提出在素数域GFP上用仿射坐标直接计算7P和7kP的改进算法,其运算量分别为I+18M+12S和I+(17k+2)M+(14k+1)S,与已有的最好算法相比,效率分别提升了8.3%和10.3%.另外,基于相同的思想给出了素数域GFP上用仿射坐标系直接计算5kP的改进算法,其运算量为I+(9k+2)M+(14k+1)S,与徐凯平和Mishra等人所提的算法相比,效率分别提升了17.2%和35.7%.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号