首页> 中文期刊> 《计算机应用与软件》 >基于KMSMOTE和随机森林的爬升段油耗分类

基于KMSMOTE和随机森林的爬升段油耗分类

     

摘要

为了解决飞机燃油消耗预测过程中的数据不平衡问题,传统SMOTE方法对少数类随机构造伪样本,从而导致了数据分布的整体变化和模糊了区间边界.针对以上问题,提出一种基于k-medoids的改进SMOTE算法,即KMSMOTE,并以随机森林作为分类器进行爬升段油耗分类.该方法使用k-medoids对少数类进行聚类操作,在聚类簇的基础上使用SMOTE构造伪样本,确保分类结果不会偏向多数类;应用随机森林算法生成分类器.选取国内同一航线、同一机型的多个航班数据为实验样本,实验结果表明,改进后的算法分类效果更好.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号