首页> 中文期刊> 《计算机应用与软件》 >一种基于密度的大边界最近邻文本分类方法

一种基于密度的大边界最近邻文本分类方法

     

摘要

距离的度量方法是影响K近邻分类算法的最重要因素,普通的欧式距离度量方法只对数值敏感无法反映数据内部的关联,对此在K近邻文本分类中引入一种大边界最近邻(LMNN)距离度量学习算法,并针对此算法会加剧数据密度分布不均的情况,提出一种改进的基于样本密度的大边界最近邻文本分类算法(DLMNNC).该算法首先利用LMNN完成对样本集的训练得到映射矩阵L对原数据空间进行重构,然后为了解决LMNN算法可能会加剧样本分布不均匀的问题定义一个密度函数D,最后用密度函数结合K近邻决策条件,实现文本分类.实验证明DLMNNC在很大程度上提高了文本分类精度.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号