首页> 中文期刊> 《计算可视媒体(英文版)》 >Skeleton-based canonical forms for non-rigid 3D shape retrieval

Skeleton-based canonical forms for non-rigid 3D shape retrieval

     

摘要

The retrieval of non-rigid 3D shapes is an important task. A common technique is to simplify this problem to a rigid shape retrieval task by producing a bending-invariant canonical form for each shape in the dataset to be searched. It is common for these techniques to attempt to 'unbend' a shape by applying multidimensional scaling(MDS) to the distances between points on the mesh, but this leads to unwanted local shape distortions. We instead perform the unbending on the skeleton of the mesh, and use this to drive the deformation of the mesh itself. This leads to computational speed-up, and reduced distortion of local shape detail. We compare our method against other canonical forms: our experiments show that our method achieves state-of-the-art retrieval accuracy in a recent canonical forms benchmark, and only a small drop in retrieval accuracy over the state-of-the-art in a second recent benchmark, while being significantly faster.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号