首页> 中文期刊> 《应用数学与计算数学学报》 >Randomized Generalized Singular Value Decomposition

Randomized Generalized Singular Value Decomposition

     

摘要

The generalized singular value decomposition (GSVD) of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement.

著录项

  • 来源
    《应用数学与计算数学学报》 |2021年第1期|137-156|共20页
  • 作者

  • 作者单位

    南京航空航天大学;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号