首页> 中文期刊> 《指挥控制与仿真》 >FPN在遥感图像检测中的应用

FPN在遥感图像检测中的应用

     

摘要

基于军事领域对遥感图像目标检测技术的需求,研究了深度学习算法中的Faster R-CNN算法,同时针对遥感图像的小目标数目较多,相邻较近等特点,研究了检测算法中的优化算法-FPN算法;在此基础上使用Caffe进行实验仿真,对比了结合不同尺度特征信息的检测模型对遥感图像中飞行器类别的检测结果;试验结果表明,Faster R-CNN算法在遥感图像飞行器类别上表现一般,但结合FPN算法思想后检测结果明显提升,最好的检测模型精度提升了8.7%;基于该检测模型,检测其他种类的遥感目标,只需要对现有的模型进行微调即可;通过优化基础的Faster R-CNN网络结构训练检测模型,能提升检测结果,为军事上的图像检测提供一种新的方向,可以避免传统目标检测过程中需要人工设计特征、检测耗时较长等缺点,也为后续自动目标检测技术的研究提供新的方向.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号