首页> 中文期刊>中华超声影像学杂志 >聚糖纳米微泡超声造影剂的制备及其超声显影效果

聚糖纳米微泡超声造影剂的制备及其超声显影效果

摘要

目的 制备聚糖纳米微泡超声造影剂,观察其基本特征及动物超声显影效果.方法 高速剪切法制备纳米微泡超声造影剂,光学显微镜和透射电镜观察纳米微泡大小、形态,马尔文粒度分析仪测粒径分布,细胞计数板计数纳米微泡,Zeta电位仪测表面电位,对比超声观察大鼠肾、心脏超声显影效果并测量声强度.结果 纳米微泡呈空心球形结构,分散均匀,形态规则,平均粒径(617±12)nm,浓度(7.2±0.6)×109/ml,Zeta电位(52.9±1.3)mV.24 h、45 d和90d三个时间点浓度、平均粒径和表面电位无明显差异(P>0.05).用其可使小鼠肾、心脏超声显影明显增强,最大视频强度分别达(15.6±1.1)GU、(27.3±2.5)GU,可视增强持续时间(10±2)min.结论 聚糖纳米微泡稳定性和显像效果良好,有可能成为可穿过血管内皮间隙的新一代超声造影剂.%Objective To develop nanometer-scale bubbles with surfaces of N-palmitoyl chitosan(PLCS) as ultrasound contrast agent and evaluate its characteristics and acoustic effects in vivo. Methods The PLCS nanobubbles were prepared using a cutting technique at differential high-frequency of shear speed. Both optical and transmission electron micrography were performed to determine the nanobubble size and morphology. Concentration, size-distribution and zeta potential of the PLCS nanobubbles were measured by cell counting chamber, Malvern lazer particle analyzer and zeta-sizer at 1-day, 45-day and 90-day. The acoustic effects of the PLCS nanobubbles on myocardium and renal tissue in 6 normal rats were observed using bolus infusion of the nanobubbles intravenously. The maximum video intensity(VI) was measured.Results The PLCS nanobubbles with nice round-shape and uniform site-distribution were demonstrated.The mean diameter,concentration and zeta potential of the PLCS nanobubbles were (617 ± 12) nm, (7.2 ±0.6) × 109/ml and (52.9 ± 1.3)mV at the 1-day,and all of parameters did not change significantly in 45-day and 90-day ( P > 0. 05). A significant contrast-enhancement was noted on myocardium and renal tissue during infusion of the nanobubbles. VI on both tissues was (15.6 ± 1.1)GU and (27.3 ± 2.5)GU,respectively. The visual contrast-enhancement last up to (10 ± 2)min. Conclusions The PLCS nanometerscale bubbles have excellent physical-features and contrast-enhanced ultrasound effects in vivo. It may develop as a novel contrast ultrasound agent which could cross endothelial cell membrances.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号